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Abstract. The connection between similarity logic and the theory of closure operators is
examined. Indeed one proves that the consequence relation defined in [14] can be obtained
by composing two closure operators and that the resulting operator is still a closure oper-
ator. Also, we extend any similarity into a similarity which is compatible with the logical
equivalence, and we prove that this gives the same consequence relation.
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1 Introduction

Due to the essential vagueness and approximation of human thinking, the logical
treatment of uncertainty is of increasing importance in artificial intelligence and re-
lated research. Nowadays, a considerable number of logical systems have been carried
out as formalizations of vague concepts and approximate reasoning (for example, see
Gargov [4], Gerla [5], Goguen [6], Hajek [7], Lano [8], Marquis [9], Novak [10],
Pavelka [11] and Takeuti and Titani [12]). However, reasoning in these logics is
still exact, i. e., in order to apply an inference rule, the antecedent clauses of this
rule must be equal either to some premises or to logical axioms or previously proven
formulas.

Recently, Ying [13, 14] proposed a new approach in which we can really make
approximate reasonings, i. e., it is possible to allow the antecedent clauses of a rule
to match its premises (or logical axioms or previously proven formulas) only ap-
proximately. The starting point is a similarity R defined in the set of propositional
variables and its “natural” extension R to the whole set of propositional formulas.
Subsequently, Biacino and Gerla [2] generalized the definition of an approximate
consequence operator given in [14] and clarified its connection with Pavelka’s logic.

1)e-mail: Gerla@matna2.dms.unina.it
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This paper is a continuation of [14] and [2] and considers the following problems:

(1) Is the similarity-based consequence operator we propose a closure operator ?
(2) is it compatible with the logical equivalence ?

Again, we observe that the natural extension R of R is not compatible with the
logical equivalence ≡ . So we can define the least similarity Re containing R and
compatible with ≡ .

(3) What about the relationship between the similarity logics based on Re and
on R, respectively ?

2 Preliminaries
In what follows we denote by L a complete and infinitely distributive lattice. Also, if
S is a nonempty set, by LS we denote the class of the L-subsets of S, that is the maps
s : S −→ L. The inclusion relation between two fuzzy subsets s1 and s2 is defined by
setting

s1 ⊆ s2 iff s1(x) ≤ s2(x) for every x ∈ S.

The intersection and union operations are defined by setting, for any x ∈ S,

(s1 ∩ s2)(x) = s1(x) ∧ s2(x) and (s1 ∪ s2)(x) = s1(x) ∨ s2(x).

In a similar way we define the infinitary unions and intersections. Given an L-subset s
and λ ∈ L, we call closed λ-cut the subset

C(s, λ) = {x ∈ L : s(x) ≥ λ}.
A fuzzy closure operator on a set S is a map J : LS −→ LS such that, for every
s, s1, s2 in LS ,

(a) J(s) ⊇ s (inclusion);
(b) If s1 ⊆ s2, then J(s1) ⊆ J(s2) (monotonicity);
(c) J(J(s)) = J(s) (idempotence).

Moreover, we say that s is closed with respect to J provided that s is a fixed point
of J , i. e., J(s) = s. In account of the inclusion property, s is closed with respect
to J iff J(s) ⊆ s. If J1 and J2 are fuzzy closure operators then the product J1 ◦ J2

satisfies the inclusion property and the monotonicity but is not idempotent, in general.
Nevertheless the following rather obvious propositions hold.

P r o po s i t i o n 2.1. Let J1 and J2 be fuzzy closure operators. Then, the following
are equivalent:

(i) J1 ◦ J2 is a fuzzy closure operator.
(ii) J1 ◦ J2 ◦ J1 = J1 ◦ J2.
(iii) J2 ◦ J1 ◦ J2 = J1 ◦ J2.
(iv) J1 ◦ J2(s) is closed with respect to J2 for any fuzzy subset s.

P r o o f .
(i)⇒ (ii). Since J1(s) ⊇ s, we have that J1(J2(J1(s))) ⊇ J1(J2(s)). Conversely,

since J2(s) ⊇ s, we have J1J2(J1(J2(s)))) ⊇ J1(J2(J1(s)) and therefore J1(J2(s)) =
J1(J2(J1(J2(s)))) ⊇ J1(J2(J1(s))).
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(ii)⇒ (i). From J1 ◦J2 ◦J1 = J1 ◦J2 it follows that J1 ◦J2 ◦J1 ◦J2 = J1 ◦J2 ◦J2 =
J1 ◦ J2.

(i)⇒ (iii). Since J2 satisfies the inclusion property, J2(J1(J2(s))) ⊇ J1(J2(s)).
Moreover, by the idempotence of J1 ◦J2 and the inclusion property of J1, J1(J2(s)) =
J1(J2(J1(J2(s)))) ⊇ J2(J1(J2(s))).

(iii)⇒ (i). From J2 ◦J1 ◦J2 = J1 ◦J2 it follows that J1 ◦J2 ◦J1 ◦J2 = J1 ◦J1 ◦J2 =
J1 ◦ J2.

(iii)⇒ (iv) and (iv)⇒ (i) are immediate. 2

Notice that J1 ◦ J2 fuzzy closure operator does not entail that J2 ◦ J1 is a fuzzy
closure operator, in general. As an example, let J1 be the usual closure operator
associated with a fuzzy topology and define J2 by setting J2(s) = s ∪ v, where v
is any open (and not closed) fuzzy subset. Then J1(J2(s)) = s ∪ v, and therefore
J2J1(J2(s)) = J1(J2(s)). This proves that J1 ◦J2 is a closure operator. Instead, since
J1(J2(J1(s))) = s ∪ v 6= s ∪ v = J2(J1(s)), J2 ◦ J1 is not a closure operator.

P r o po s i t i o n 2.2. Let J1 and J2 be fuzzy closure operators. Then the following
are equivalent:

(i) Both J1 ◦ J2 and J2 ◦ J1 are fuzzy closure operators.
(ii) J1 ◦ J2 = J2 ◦ J1.

P r o o f . From Proposition 2.1 it follows that if both J1 ◦ J2 and J2 ◦ J1 are fuzzy
closure operators, then J2 ◦ J1 = J1 ◦ J2 ◦ J1 = J1 ◦ J2. The converse implication is
immediate. 2

3 Similarities

An L-valued binary relation on S is an L-subset R : S × S −→ L of the set S × S.
Moreover

· if R(x, x) = 1 for any x ∈ S, then R is said to be reflexive;
· if R(x, y) = R(y, x) for any x, y ∈ S, then R is said to be symmetric;
· if R(x, y) ∧ R(y, z) ≤ R(x, z) for any x, y, z ∈ S, then R is said to be transitive.

A reflexive, symmetric and transitive L-valued binary relation on S is called a
similarity on S. In the following we denote by Rλ the λ-cut C(R, λ) of R. It is
easy to prove that R is a similarity iff every λ-cut Rλ = {(x, y) : R(x, y) ≥ λ} is a
(classical) equivalence relation in S. Any similarity relation R is associated with an
interesting fuzzy closure operator. Indeed, we define JR by setting

JR(s)(x) =
∨

y∈S(s(y) ∧ R(x, y)).

In a sense, JR(s) is the L-subset of elements that are similar to some element in s.
Obviously, s is a fixed point of JR iff for every x, y ∈ S, s(x) ≥ s(y) ∧ R(x, y). In
this case we say that s is closed with respect to R, too.

As it is known, given any L-relation R we can build up the similarity relation
generated by R. To illustrate such a possibility, we have to give some definitions.

D e f i n i t i o n 3.1. Let R and R be L-valued binary relations on a set S. Then R
is called the reflexive (or symmetric, or transitive) closure of R if
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· R is reflexive (or symmetric, or transitive, respectively),
· R ⊇ R,
· T ⊇ R provided that T is an L-valued binary relation such that T ⊇ R and T

is reflexive (or symmetric, or transitive, respectively).
The reflexive, symmetric and transitive closures of R are denoted by r(R), s(R), and
t(R), respectively.

In the following if R1 and R2 are binary L-relations on S, then R ◦ S is the
L-relation on S defined by setting for any x, y ∈ S,

(R1 ◦R2)(x, y) =
∨

z∈Y (R1(x, z) ∧ R2(z, y)).
The powers Rn are defined by induction on n by setting, R1 = R and Rn+1 = R ◦Rn.
We denote by ∆ the diagonal of S, i. e., for any x, y ∈ S,

∆(x, y) =
{

1 if x = y,
0 otherwise.

Also, we denote by R−1 the inverse of R, i. e., for any x, y ∈ Y , R−1(x, y) = R(y, x).
The proof of the following proposition is immediate.
P r o po s i t i o n 3.1. Given an L-relation R, then r(R) = ∆ ∪ R, s(R) = R ∪ R−1,

and t(R) =
⋃

n∈N
Rn.

The following proposition, whose proof is immediate, enables us to obtain the
similarity generated by a given L-relation.

P r o po s i t i o n 3.2. Define the operator Sim : LS×S −→ LS×S by setting for any
R in LS×S, Sim(R) = t(r(s(R))). Then Sim is a fuzzy closure operator and Sim(R)
is the smallest similarity containing R.

4 Approximate logical consequences

Let T = {F,⇒}, where F is a constant (called false) and ⇒ a binary connective,
and let X be a set whose elements we call propositional variables. Then we denote
by P (X) the language of the propositional calculus on X, i. e., the free T -algebra
on X (cf. e. g. Barnes and Mack [3, p. 12]), and by Taut ⊆ P (X) the set of all
(classical) tautologies. For any p ∈ P (X), let [p] be the equivalence class of p under
the logical equivalence ≡, i. e., [p] = {q ∈ P (X) : q ≡ p}. Also, for any A ⊆ P (X),
let [A] =

⋃
p∈A[p]. If A ⊆ P (X) we say that A is closed under ≡ provided p ≡ q

implies that p ∈ A iff q ∈ A. It is immediate that [A] is the least set of formulas
closed with respect to ≡ and containing A. Therefore A is closed with respect to ≡
iff A = [A]. We can extend such notions to L-subsets as follows. An L-subset s is
said to be closed under ≡ if, for any p, q ∈ P (X), p ≡ q entails s(p) = s(q). Also, we
set [s](p) = Sup{s(q) : q ≡ p}. Then [s] is the least L-subset closed with respect to ≡
and containing s. Obviously, s is closed under ≡ if and only if s = [s].

D e f i n i t i o n 4.1. Let R be an L-valued binary relation on X. The natural
extension R on P (X) of R is given by induction as follows:

· R(p, q) = R(p, q) if p, q ∈ X;
· R(F, q) = R(q, F ) = 0 if q 6= F , and R(F, F ) = 1;
· R(p, q) = R(x, x′) ∧ R(y, y′) if p = (x ⇒ y) and q = (x′ ⇒ y′);
· R(p, q) = 0 otherwise.
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Clearly, if R is reflexive, symmetric or transitive, so is R. In particular, if R is a
similarity, then R is a similarity, too. Another way to define R is the following. For
any α ∈ P (X) let Var(α) denote the set of propositional variables in α. Schemes are
particular formulas defined by assuming that every propositional variable is a schema,
and if α and β are schemes and Var(α) ∩ Var(β) = ∅, then (α ⇒ β) is also a schema.
We denote by α(y1, . . . , yn) a schema α such that Var(α) = {y1, . . . , yn}. A substi-
tution of propositional variables in α is a map from {y1, . . . , yn} into X. We denote
by (x1/y1, . . . , xn/yn) a substitution where xi is the image of yi (i = 1, 2, . . . , n),
and we write p = α(x1/y1, . . . , xn/yn) (in brief p = α(x1, . . . , xn)) to denote the
formula obtained by substituting yi with xi. We say that p and p′ have the same
structure if there exists a schema α(y1, . . . , yn) such that p = α(x1/y1, . . . , xn/yn)
and p′ = α(x′1/y1, . . . , x′n/yn). In this case (x1, . . . , xn) and (x′1, . . . , x′n) are called
the characteristics of p and p′, respectively.

P r o po s i t i o n 4.1. For any p, p′ ∈ P (X) we have

· R(p, p′) = 0 if p and p′ have not the same structure;

· R(p, p′) =
∧n

i=1 R(xi, x
′
i) if p and p′ have the same structure and (x1, . . . , xn)

and (x′1, . . . , x′n) are the characteristics of p and p′, respectively.

P r o o f . By induction on the length l(p) of p. 2

The following definition is on the basis of similarity logic.
D e f i n i t i o n 4.2. For any s ∈ LP(X) and B ⊆ P (X) let

R̃(s, B) =
∧

q∈B

∨
p∈P(X)(s(p) ∧ R(p, q)).

In a sense R̃(s, B) is the truth degree of the claim “every element in B is equivalent
to an element in s”. It can be seen as a generalization of the inclusion relation. Indeed,
if s is the crisp set A and R is the identity relation, then R̃(A, B) = 1 iff B is enclosed
in A. It is immediate that R̃(s, ∅) = 1 and that R̃(s, B) =

∧
q∈B JR(s)(q). As a

consequence, if s is closed with respect to R, then R̃(s, B) =
∧

q∈B s(q).

The following proposition shows that R̃ is transitive, in a sense.
P r o po s i t i o n 4.2. For any s ∈ LP(X) and A, B ⊆ P (X),

R̃(s, A) ∧ R̃(A, B) ≤ R̃(s, B).

P r o o f . From Definition 4.2 we have

R̃(s, A) ∧ R̃(A, B)= R̃(s, A) ∧ (
∧

r∈B

∨
q∈A R(q, r))

=
∧

r∈B(R̃(s, A) ∧ ∨
q∈A R(q, r))

=
∧

r∈B

∨
q∈A(R̃(s, A) ∧ R(q, r))

=
∧

r∈B

∨
q∈A[

∧
q′∈A

∨
p∈P(X)(s(p) ∧ R(p, q′)) ∧ R(q, r)]

≤∧
r∈B

∨
q∈A[

∨
p∈P(X)(s(p) ∧ R(p, q)) ∧ R(q, r)]

=
∧

r∈B

∨
q∈A

∨
p∈P(X)(s(p) ∧ R(p, q) ∧ R(q, r))

≤∧
r∈B

∨
p∈P(X)(s(p) ∧ R(p, r))

= R̃(s, B). 2
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Now we are able to give the main definition in similarity logic.
D e f i n i t i o n 4.3. Let R be an L-valued binary relation on X. For any s ∈ LP(X)

and q ∈ P (X), the degree to which q follows from s is given by

ConR(s, q) =
∨{R̃(Taut ∪ s, B) : B ` q},

where B ` q means that q is a consequence of B in (classical) propositional logic.

Notice that if q is a tautology, then ConR(s, q) = R̃(Taut ∪ s, ∅) = 1. Also, in
defining ConR(s, q) we can refer only to finite sets B of formulas. Finally observe that
if s is closed with respect to R and s ⊇ Taut, then

ConR(s, q) =
∨{s(α1) ∧ · · · ∧ s(αn) : α1, . . . , αn ` q}.

If we can recognize R from the context, then R may be dropped from ConR(s, q).
N o t e . In any concrete application the available information for an inferential

process is partial, finite and, if this is possible, not too big. In particular, this holds
for the information we need to describe R. For example, it is not useful to recall
that R(x, x) = 1 for any x ∈ X. Moreover, once it is claimed that the propositional
variable x is equivalent to y at degree λ, the fact that the variable y is equivalent to
x at same degree can be assumed implicitly. Then, we can admit that the similarity
relation is only partially described by a relation R. In this case we have to consider the
similarity generated by R and therefore, in accordance with the results in Section 3,
we have

(i) to symmetrize R by considering s(R),
(ii) to consider the reflexive extension r(s(R)) of s(R),
(iii) to consider the transitive extension Sim(R) = t(r(s(R))) of r(s(R)),
(iv) to extend Sim(R) to the whole set of formulas by considering Sim(R).

Now, it is possible to prove that if R is reflexive and symmetric, it is Sim(R) = Sim(R).
Consequently, the steps (iii) and (iv) can be substituted by the steps

(iii′) r(s(R)) is extended to the whole set of formulas by considering r(s(R)),
(iv′) r(s(R)) becomes a similarity by considering Sim(r(s(R))).

5 Closure property of the consequence operator

In [2], Biacino and Gerla gave a useful characterization of the similarity-based
consequence operator in terms of fuzzy closure operators. To expose such a charac-
terization we have to define two interesting fuzzy closure operators. The first one,
proposed in [1] and [5], is the operator D : LP(X) −→ LP(X) defined by setting

D(s)(p) =
{

1 if p is a tautology,∨{s(p1) ∧ · · · ∧ s(pn) : p1, . . . , pn ` p} otherwise.

Such an operator is the deduction operator of a suitable fuzzy logic (the logic of
necessities). The main properties of D are exposed in the following proposition whose
proof is immediate.

P r o po s i t i o n 5.1. D is a fuzzy closure operator extending the deduction operator
of the classical propositional calculus. Also, for any L-subset s of formulas, D(s) is
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compatible with the logical equivalence, i. e., p ≡ q implies D(s)(p) = D(s)(q). Finally,
D(s) ⊇ [s] ⊇ s and D(s) ⊇ Taut.

We say that two fuzzy subsets of formulas s1 and s2 are logically equivalent, and
we write s1 ≡ s2, provided that D(s1) = D(s2).

The second operator we need is related with the similarity R. In fact, we define
HR : LP(X) −→ LP(X) by setting, for any L-subset s of formulas,

HR(s) = JR(s ∪ Taut),

where JR is the fuzzy closure operator associated with R. It is immediate that HR

is a fuzzy closure operator on LP(X). In the sequel we will drop the index R and
we write J and H to denote JR and HR, respectively. The following theorem, whose
proof was given in [2], establishes a connection among similarity logic and the logic
of the necessities.

T h e o r em 5.1. For any fuzzy subset s we have Con(s, . ) = (D ◦H)(s).
P r o o f . If q is a tautology, then both Con(s, q) and (D ◦H)(s)(q) are equal to 1.

Otherwise, since R̃(Taut ∪ s, B) =
∧

q∈B H(s)(q), we have

ConR(s, q)=
∨{R̃(Taut ∪ s, B) : B ` q and B finite}

=
∨{H(s)(α1) ∧ · · · ∧ H(s)(αn) : α1, . . . , αn ` q}

=D(H(s))(q). 2

The proof of the following theorem explains some flexibility of this characterization
of Con.

T h e o r em 5.2. The map D ◦ H associating to any L-subset s the L-subset
Con(s, . ) is a closure operator on LP(X) .

P r o o f . By Theorem 5.1 and Proposition 2.1 it suffices to prove that for every
L-subset s of formulas, s = (D◦H)(s) is closed with respect to H , i. e., since Taut ⊆ s,
J(s) ⊆ s. In turn this is equivalent to prove that s(p) ≥ s(p′) ∧ R(p, p′) for every
p, p′ ∈ P (X). If p′ is a tautology, then since s(p′) = 1 and s = (D ◦ H)(s) =
D(J(s ∪ Taut)) ⊇ J(Taut), we have

s(p) ≥ ∨
p′∈Taut R(p, p′) ≥ R(p, p′) = s(p′) ∧ R(p, p′).

Consider the case in which p′ is not a tautology. Then
s(p′) =

∨{H(s)(α1) ∧ · · · ∧ H(s)(αm) : α1, . . . , αm ` p′}.
Moreover, since the case R(p, p′) = 0 is immediate, we assume also that R(p, p′) > 0.
Then there exists a schema α(y1, . . . , yn) such that p = α(x1/y1, . . . , xn/yn) and
p′ = α(x′1/y1, . . . , x′n/yn), where (x1, . . . , xn) and (x′1, . . . , x

′
n) are the related charac-

teristics. We have that for every α1, . . . , αm in P (X), α1, . . . , αm ` p′ implies
α1, . . . , αm, x1 ⇒ x′1, x′1 ⇒ x1, . . . , xn ⇒ x′n, x′n ⇒ xn ` p.

Moreover,
H(s)(xi ⇒ x′i)= J(s ∪ Taut)(xi ⇒ x′i)

≥ J(Taut)(xi ⇒ x′i)

=
∨

α∈Taut R(α, xi ⇒ x′i)

≥R(xi ⇒ xi, xi ⇒ x′i) = R(xi, x
′
i).



84 Loredana Biacino, Giangiacomo Gerla, and Mingsheng Ying

Thus,
s(p′) ∧ R(p, p′)

=
∨{H(s)(α1) ∧ · · · ∧ H(s)(αm) ∧ R(p, p′) : α1, . . . , αm ` p′}

≤ ∨{H(s)(α1) ∧ · · · ∧ H(s)(αm) ∧ R(x1, x
′
1) ∧ · · · ∧ R(xn, x′n) :

α1, . . . , αm, x1 ⇒ x′1, x′1 ⇒ x1, . . . , xn ⇒ x′n, x′n ⇒ xn ` p}
≤ ∨{H(s)(α1) ∧ · · · ∧ H(s)(αm)

∧ H(s)(x1 ⇒ x′1) ∧ H(s)(x′1 ⇒ x1) ∧ · · · ∧ H(s)(x′n ⇒ xn) :
α1, . . . , αm, x1 ⇒ x′1, x′1 ⇒ x1, . . . , xn ⇒ x′n, x′n ⇒ xn ` p}

≤ (D ◦H)(s)(p) = s(p). 2

Notice that H ◦ D 6= D ◦ H and therefore, in accordance with Proposition 2.2,
the map H ◦ D is not a closure operator, in general. As an example, assume that
R(p2, p3) = 1 and R(p1, pj) = 0 for every j 6= 1. Then, we have that

H(D({p3, p2 ⇒ p1}))(p1)=
∨

x∈F (X) D({p3, p2 ⇒ p1})(x) ∧ R(p1, x)
=D({p3, p2 ⇒ p1})(p1) = 0.

Moreover, since p2 and p2 → p1 are in H({p3, p2 ⇒ p1}),
D(H({p3, p2 ⇒ p1}))(p1) = 1.

We conclude this section by showing that Con is compatible with the logical
equivalence of the L-subsets of formulas.

T h e o r em 5.3. Let s be an L-subset of formulas. Then
Con(s, p) = Con([s], p) = Con(D(s), p).

Thus, for all L-subsets s1, s2 of formulas with s1 ≡ s2, Con(s1 , . ) = Con(s2, . .).
P r o o f . It is immediate that Con(s, p) ≤ Con([s], p) ≤ Con(D(s), p). Also,

observe that Con(s, p) = D(H(s))(p) = D(H(D(s)))(p) = Con(D(s), p). 2

6 Similarities compatible with the logical equivalence

It is worth noticing that R is not compatible with the logical equivalence. For example,
let X = {x, y}, and let p be the formula (y ⇒ y) ⇒ x. Then, while p is logically
equivalent to x, we have that R(x, x) = 1 and R(x, p) = 0. This suggests to substitute
R with a similarity that is compatible with the logical equivalence ≡ .

D e f i n i t i o n 6.1. For any p, q ∈ P (X) the compatible extension of R on P (X) is
the L-relation Re defined by

Re(p, q)=
∨{R(p1, p2) ∧ R(p3, p4) ∧ · · · ∧ R(p2n−1, p2n) :

p ≡ p1, p2 ≡ p3, . . . , p2n ≡ q}.
Clearly, Re is compatible with ≡, i. e., if p ≡ p′ and q ≡ q′, then Re(p, q) =

Re(p′, q′), and it is easy to show that the following proposition holds.
P r o po s i t i o n 6.1. If R is a similarity so is Re. More precisely, Re is the smallest

similarity compatible with ≡ and containing R.
P r o o f . Immediately. 2

If we set Re in the place of R in the definitions in the previous sections, we obtain
R̃e instead of R̃, Cone(s, q) instead of Con(s, q), Je instead of J , and He instead of H .
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As an example, for any s ∈ LP(X) and B ⊆ P (X), we set

R̃e(s, B) =
∧

q∈B

∨
p∈P(X)(s(p) ∧ Re(p, q)).

It is easy to prove that for any A, B ⊆ P (X), B ⊆ [A] implies R̃e(A, B) = 1.
Several properties we have proved for R̃, Con(s, q), J and H are valid also for R̃e,
Cone(s, q), Je and He, respectively. As an example, it is immediate to prove that for
any s ∈ LP(X) and A, B ⊆ P (X) we have R̃e(s, A) ∧ R̃e(A, B) ≤ R̃e(s, B). Also,
Cone(s, . ) = (D ◦He)(s).

L e mm a 6.1. Let s be an L-subset of formulas containing Taut, and assume that
s is closed with respect to ≡ and R. Then, for any q ∈ P (X), Con(s, q) = Cone(s, q).

P r o o f . Clearly, Con(s, q) ≤ Cone(s, q). Conversely, observe that if B ⊆ P (X),

R̃e(Taut ∪ s, B) = R̃e(s, B)

=
∧

r∈B

∨
p∈P(X)(s(p) ∧ Re(p, r))

=
∧

r∈B

∨
p∈P(X)(s(p) ∧ ∨{R(p1, p2) ∧ R(p3, p4) ∧ · · · ∧ R(p2n−1, p2n) :

p1 ≡ p, p2 ≡ p3, . . . , p2n ≡ r})
=

∧
r∈B

∨
p∈P(X)

∨{s(p) ∧ R(p1, p2) ∧ R(p3, p4) ∧ · · · ∧ R(p2n−1, p2n) :
p1 ≡ p, p2 ≡ p3, . . . , p2n ≡ r}.

Since s is closed with respect to ≡ and R, if p1 ≡ p, p2 ≡ p3, . . . , p2n ≡ r, then we
have that

s(p) ∧ R(p1, p2) ∧ R(p3, p4) ∧ · · · ∧ R(p2n−1, p2n)

= s(p1) ∧ R(p1, p2) ∧ R(p3, p4) ∧ · · · ∧ R(p2n−1, p2n)

≤ s(p2) ∧ R(p3, p4) ∧ · · · ∧ R(p2n−1, p2n)
. . .

≤ s(p2n−1) ∧ R(p2n−1, p2n),
whence, we obtain

R̃e(s, B) ≤ ∧
r∈[B]

∨
p∈P(X)(s(p) ∧ R(p, r) = R̃(s, [B])).

Thus, since B ` q implies [B] ` q, we can conclude that

Cone(s, q)=
∨{R̃e(Taut∪ s, B) : B ` q}

≤∨{R̃(s, [B]) : B ` q}
≤∨{R̃(s, D) : D ` q} = Con(s, q). 2

The following theorem shows that the consequence relation based on Re coincides
with the one based on R.

T h e o r em 6.1. The consequence relations Con and Cone coincide.
P r o o f . First we observe that, by Proposition 5.1, D(H(s)) contains Taut and

it is closed with respect to ≡ . Moreover, since D ◦ H is a closure operator, by
Proposition 2.1 we have that D(H(s)) = H(D(H(s)) = J(D(H(s)) and therefore
D(H(s)) is a fixed point of J , i. e. D(H(s)) is closed with respect to R, too. Thus,
by the just proven lemma,

Con(s, . )=D(H((s)) = D(H(D(H((s))))
=D(He(D(H(s)))) ⊇ D(He(s)) = Cone(s, . ). 2
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